Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256147

Résumé

Public health interventions to decrease the spread of SARS-CoV-2 were largely implemented in the United States during spring 2020. This study evaluates the additional effects of these interventions on non-SARS-CoV-2 respiratory viral infections from a single healthcare system in the San Francisco Bay Area. The results of a respiratory pathogen multiplex polymerase chain reaction panel intended for inpatient admissions were analyzed by month between 2019 and 2020. We found major decreases in the proportion and diversity of non-SARS-CoV-2 respiratory viral illnesses in all months following masking and shelter-in-place ordinances. These findings suggest real-world effectiveness of nonpharmaceutical interventions on droplet-transmitted respiratory infections.


Sujets)
COVID-19 , Infections de l'appareil respiratoire
2.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.265561

Résumé

COVID-19 causes cardiac dysfunction in up to 50% of patients, but the pathogenesis remains unclear. Infection of human iPSC-derived cardiomyocytes with SARS-CoV-2 revealed robust transcriptomic and morphological signatures of damage in cardiomyocytes. These morphological signatures include a distinct pattern of sarcomere fragmentation, with specific cleavage of thick filaments, and numerous iPSC-cardiomyocytes that lacked nuclear DNA. Human autopsy specimens from COVID-19 patients also displayed marked sarcomeric disruption and similar fragmentation, as well as prevalently enucleated cardiomyocytes. These striking transcriptomic and cytopathic changes provide a roadmap to understand the mechanisms of COVID-19 cardiac damage, search for potential treatments, and determine the basis for prolonged cardiac morbidity observed in this pandemic.


Sujets)
COVID-19 , Cardiopathies
3.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.06.03.20121525

Résumé

Background: SARS-CoV-2 infection can be detected indirectly by measuring the host immune response. Anti-viral antibody concentrations generally correlate with host protection and viral neutralization, but in rare cases, antibodies can promote disease progression. Elucidation of the kinetics and magnitude of the SARS-CoV-2 antibody response is essential to understand the pathogenesis of COVID-19 and identify potential therapeutic targets. Methods: Sera (n=533) from patients with RT-PCR confirmed COVID-19 (n=153) were tested using a high-throughput quantitative IgM and IgG assay that detects antibodies to the spike protein receptor binding domain and nucleocapsid protein. Individual and serial samples covered the time of initial diagnosis, during the disease course, and following recovery. We evaluated antibody kinetics and correlation between magnitude of the response and disease severity. Results: Patterns of SARS-CoV-2 antibody production varied considerably. Among 52 patients with 3 or more serial specimens, 44 (84.6%) and 42 (80.8%) had observed IgM and IgG seroconversion at a median of 8 and 10 days, respectively. Compared to those with milder disease, peak measurements were significantly higher for patients admitted to the intensive care unit for all time intervals between 6 and 20 days for IgM, and all intervals after 5 days for IgG. Conclusions: High sensitivity assays with a robust dynamic range provide a comprehensive picture of host antibody response to SARS-CoV-2. IgM and IgG responses were significantly higher in patients with severe than mild disease. These differences may affect strategies for seroprevalence studies, therapeutics and vaccine development.


Sujets)
COVID-19
4.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.05.19.20107482

Résumé

We report very low SARS-CoV-2 seroprevalence in two San Francisco Bay Area populations. Seropositivity was 0.26% in 387 hospitalized patients admitted for non-respiratory indications and 0.1% in 1,000 blood donors. We additionally describe the longitudinal dynamics of immunoglobulin-G, immunoglobulin-M, and in vitro neutralizing antibody titers in COVID-19 patients. Neutralizing antibodies rise in tandem with immunoglobulin levels following symptom onset, exhibiting median time to seroconversion within one day of each other, and there is >93% positive percent agreement between detection of immunoglobulin-G and neutralizing titers.


Sujets)
COVID-19
5.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.04.25.20074856

Résumé

Background Serological tests are crucial tools for assessments of SARS-CoV-2 exposure, infection and potential immunity. Their appropriate use and interpretation require accurate assay performance data. Method We conducted an evaluation of 10 lateral flow assays (LFAs) and two ELISAs to detect anti-SARS-CoV-2 antibodies. The specimen set comprised 128 plasma or serum samples from 79 symptomatic SARS-CoV-2 RT-PCR-positive individuals; 108 pre-COVID-19 negative controls; and 52 recent samples from individuals who underwent respiratory viral testing but were not diagnosed with Coronavirus Disease 2019 (COVID-19). Samples were blinded and LFA results were interpreted by two independent readers, using a standardized intensity scoring system. Results Among specimens from SARS-CoV-2 RT-PCR-positive individuals, the percent seropositive increased with time interval, peaking at 81.8-100.0% in samples taken >20 days after symptom onset. Test specificity ranged from 84.3-100.0% in pre-COVID-19 specimens. Specificity was higher when weak LFA bands were considered negative, but this decreased sensitivity. IgM detection was more variable than IgG, and detection was highest when IgM and IgG results were combined. Agreement between ELISAs and LFAs ranged from 75.7-94.8%. No consistent cross-reactivity was observed. Conclusion Our evaluation showed heterogeneous assay performance. Reader training is key to reliable LFA performance, and can be tailored for survey goals. Informed use of serology will require evaluations covering the full spectrum of SARS-CoV-2 infections, from asymptomatic and mild infection to severe disease, and later convalescence. Well-designed studies to elucidate the mechanisms and serological correlates of protective immunity will be crucial to guide rational clinical and public health policies.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
SÉLECTION CITATIONS
Détails de la recherche